

SILICON CARBIDE FOR NEXT GENERATION VEHICULAR POWER CONVERTERS John Kajs – SAIC

maintaining the data needed, and including suggestions for reducin	completing and reviewing the colle g this burden, to Washington Head ould be aware that notwithstanding	ction of information. Send commer quarters Services, Directorate for In	ts regarding this burden estim formation Operations and Rep	ate or any other aspect orts, 1215 Jefferson Da	existing data sources, gathering and of this collection of information, wis Highway, Suite 1204, Arlington with a collection of information if it		
1. REPORT DATE 18 AUG 2010		2. REPORT TYPE N/A		3. DATES COVERED			
4. TITLE AND SUBTITLE Silicon Carbide fo	r Next Generation	Vehicular Power Co	onverters	5a. CONTRACT NUMBER W56HZV05C0225			
				5b. GRANT NUN	MBER		
				5c. PROGRAM I	ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT N	UMBER		
John Kajs				5e. TASK NUMI	BER		
				5f. WORK UNIT	NUMBER		
7. PERFORMING ORGAN SAIC	IIZATION NAME(S) AND A	DDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER			
US Army RDECO	DRING AGENCY NAME(S) M-TARDEC 6501	` '	en, MI	10. SPONSOR/MONITOR'S ACRONYM(S) TACOM/TARDEC			
48397-5000, USA				11. SPONSOR/MONITOR'S REPORT NUMBER(S) 21103			
12. DISTRIBUTION/AVAI Approved for pub	ILABILITY STATEMENT lic release, distribut	tion unlimited					
		•			m (GVSETS), 17 22		
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFIC	CATION OF:	17. LIMITATION	18. NUMBER	19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	OF ABSTRACT SAR	OF PAGES 15	RESPONSIBLE PERSON		

Report Documentation Page

Form Approved OMB No. 0704-0188

- Higher Temperature Capability than High Power Silicon
 - 175 °C for silicon (Si) IGBT & diode junction temperature
 - >250 °C for SiC DMOSFET & diode junction temperature
- Faster Switching Characteristics
 - Lowers switching losses for hard switched converters
 - Reduces size of passive components
- Improved Thermal Conductivity of SiC compared to Si
 - Thermal performance becomes limited by packaging which is typically a modified silicon package

- Benefits of SiC
- Status of commercially available SiC at this time
- Converters being developed
- Data measured
 - DC
 - AC
 - Thermal
- Conclusions

Status of High Power SiC

- Devices available from multiple vendors
 - Modules tested used 1200 Volt/20 Amp DMOSFET and 1200 Volt/10 Amp JBS Diodes per location from Cree
 - Significant data available from device testing
- Modules tested are commercially available from Powerex & MS Kennedy in half H-bridge modules
 - ½ H-Bridge modules similar to IGBT modules available from both vendors
 - 5 parallel devices (DMOSFETS & diodes) per location
 - Limited or incomplete datasheets for modules presently available
- Purpose of testing was to obtain adequate data to enable initial design of converters using available SiC modules

Modules Tested

POWER AND ENERGY

- Mass
 - Powerex: 400 g
 - MSK: 200 g

Powerex (left), MSK (right)

Powerex (left), MSK (right)

Converters Being Developed

POWER AND ENERGY

- DC-DC Converter
 - 300 Volt DC to 28 Volt DC
 - 30 kW Power Level

- DC-AC Converter
 - 300 Volt DC to 50/60 HzOutput
 - 30 kW Power Level
 - Utilizes DC-DC converter as isolation stage
 - 300 to 400 Volt DC-DC
 - Full bridge rectified rather than ½ bridge

Data Measured

- DC Characteristics (JBS Diodes & DMOSFETS)
 - Primarily verification of scaling of parallel devices or datasheet values
- AC Characteristics
 - Turn-on & Turn-off losses
 - Typically given as curves for silicon IGBT & MOSFET modules
 - Some data available for SiC devices
 - Little or no data presently available for SiC modules
 - Gate Circuitry
 - Combination of voltages & resistances
 - Packaging differences (ie stray impedances) can become dominant factor as a result of higher speed switching of SiC devices
- Thermal Characteristics
 - Limited or no data presently on available datasheets
- Reliability data for module design choices not evaluated due to limited funding & time (will eventually be needed for long-term converter reliability)

Rds On Measurements

POWER AND ENERGY

- Measured with Sony/Tektronix 371b in short pulses over range of operation
- All measured values (both Powerex & MSK) at 25 °C & 175
 °C were within range of values given in Powerex datasheet

Rds Measurement Waveforms

Rds Measured at 100 Amps & Vgs=20 V

		25 C	100 C	175 C
		Ron (m-Ω)	$Ron(m-\Omega)$	Ron (m-Ω)
PX104	Device 1	18.81	20.00	24.06
	Device 2	17.89	18.81	23.56
PX105	Device 1	19.23	19.23	23.71
	Device 2	18.72	19.70	25.00
Powerex .	Ave	18.66	19.44	24.08
MSK 392	2 Device 1	20.71	22.45	31.58
	Device 2	19.40	22.45	29.72
MSK 393	B Device 1	20.19	21.74	29.47
	Device 2	19.81	21.26	29.63
MSK 394	Device 1	21.15	23.27	30.98
	Device 2	20.69	21.78	29.57
MSK Ave	e	20.33	22.16	30.16
MSK/Pov	werex	109%	114%	125%

Diode Measurements

POWER AND ENERGY

- Voltage measurements at 25
 °C consistent with Powerex datasheet
- Voltage measurements at 175
 °C lower (less lossy) than
 Powerex datasheet indicated
- Upon closer examination
 Powerex datasheet is only indicating voltages for external SB diodes
 - Actual measurements include effect of both SB diodes & intrinsic PN diodes (part of DMOSFETS)

Measurements at 25 °C

Measurements at 175 °C

Switching Loss Setup

POWER AND ENERGY

Switching Loss Measurements

POWER AND ENERGY

- Losses were similar between 2 types of modules
- Powerex modules had lower ringing than MSK modules
 - Powerex modules appear to have lower internal inductance than MSK modules
 - Lower ringing allows safe operation at higher switching speeds

Turn-On Losses

Turn-Off Losses

Gating Modifications

- Recommendation was for operation at Vgs,on=20 V & Vgs,off=-5 V & Rg=5Ω
- Operation with Rg,on~18Ω used to avoid excessive ringing, Rg,off=5Ω used

Gate Drive Circuit to allow different Turn-on & Turn-off resistor

Test Example at $Rg=\Omega$ for MSK Module

Thermal Measurements

Powerex DMOSFET Thermal Measurements

Current (Amps)	Voltage	Power (W)	Ron (Ω)	Tbp (°C)	Tdie (°C)	R _{th(j-c)} (°C/W)	Thsink (°C)	$R_{th(j-h)}$ (°C/W)		
75	3.304	247	0.0442	62	107	0.18	49	0.24		
60	2.855	171	0.0476	50	78	0.16	42	0.21		
50	2.51	126	0.0502	43	64	0.16	37	0.21		
40	2.08	83	0.0520	38	50	0.15	33	0.20		

Powerex Diode Thermal Measurements

Current (Amps)	Voltage	Power (W)	Ron (Ω)	Tbp (°C)	Tdie (°C)	R _{th(j-c)} (°C/W)	Thsink (°C)	$R_{th(j-h)}$ (°C/W)
75	1.854	139	0.0248	48	71	0.17	39	0.23
60	1.635	98	0.0272	41	51	0.10	35	0.16
50	1.496	75	0.0299	38	44	0.09	33	0.15
40	1.365	55	0.0341	34	34	0.01	31	0.07

Powerex Datasheet

- DMOSFET
 - Rth,j-c=0.17 °C/W
 - Rth,j-h=0.21 °C/W
- Diode
 - Rth,j-c=0.28 °C/W
 - Rth,j-h=0.32 °C/W

MSK DMOSFET Thermal Measurements

Current (Amps)	Voltage	Power (W)	Ron (Ω)	Tbp (°C)	Tdie (°C)	R _{th(j-c)} (°C/W)	Thsink (°C)	R _{th(j-h)} (°C/W)	
60	3.05	183	0.0509	76	117	0.22	47	0.38	
50	2.77	139	0.0555	65	98	0.24	43	0.40	
40	2.45	98	0.0614	53	75	0.23	36	0.39	
30	2.06	62	0.0685	43	55	0.19	32	0.37	

MSK Diode Thermal Measurements

Current (Amps)	Voltage	Power (W)	Ron (Ω)	Tbp (°C)	Tdie (°C)	R _{th(j-c)} (°C/W)	Thsink (°C)	R _{th(j-h)} (°C/W)
75	2.29	171	0.0306	72	122	0.29	45	0.45
60	1.98	119	0.0330	59	99	0.33	40	0.49
50	1.77	88	0.0353	51	81	0.33	35	0.52
40	1.56	62	0.0389	44	61	0.27	32	0.46
30	1.37	41	0.0456	37	40	0.07	29	0.26

- No MSK datasheet provided
- Measured MSK thermal peformance (junction to heat-sink) ~60% worse than Powerex Modules

Overall Comparison

DC Losses

- Measured Powerex module losses lower than measured MSK module losses
- All modules (Powerex & MSK) within range provided by Powerex indicating possibility that variation could be device lot dependent
- AC Losses
 - Powerex modules have less ringing allowing operation at higher frequency than MSK modules
 - Indication primarily of lower module inductances
 - Next generation MSK modules likely different than tested modules
- Thermal Properties
 - Measured MSK module performance worse than Powerex module performance
- Physical
 - MSK module is smaller & lighter than Powerex module

Conclusions

 Module measurements completed to allow initial designs for fabrication of converters to demonstrate of SiC converters using Commercially available SiC modules